Premium Phosphosite-Specific 7TM Antibodies
Novel Tools for Your GPCR Research
Select Your Country of Delivery below

Premium Phosphosite-Specific 7TM Antibodies

Phosphorylation of intracellular serine and threonine residues is the most important post translational modification of G protein-coupled receptors (GPCRs) also called heptahelical or seven transmembrane receptors (7TMR). After agonist exposure, these receptors acquire an active conformation, which is recognized by a family of highly specialized GPCR kinases (GRKs). Agonist-driven phosphorylation by GRKs regulates acute receptor desensitization, arrestin recruitment, internalization, post-activation signaling, long-term tolerance and drug addiction. Phosphosite-specific 7TM antibodies are designed to specifically detect agonist-activated GPCRs. In fact, recent work shows that ligand profiling using phosphosite-specific 7TM antibodies provides valuble information on ligand bias beyond that obtained with conventional ß-arrestin recruitment assays. Phosphosite-specific 7TM antibodies are novel tools for GPCR research that can be used to:

  • profile agonist properties of novel GPCR ligands
  • decipher the phosphorylation barcode of GPCRs
  • determine the spatial and temporal dynamics of receptor phosphorylation
  • identify relevant kinases and phosphatases for GPCR phosphorylation and dephosphoryation

Lifecycle3


Schematic representation of the G protein-coupled receptor phosphorylation / dephosphorylation cycle. GRK, G protein-coupled receptor kinase; PKC, protein kinase C; cPP1, catalytic subunit of protein phosphatase 1; R*, activated GPCR; CCP, clathrin-coated pit. 

Close filters
14 From 30
No results were found for the filter!
NEW
Agonist-induced Serine336/Serine337 phosphorylation of the Chemokine Receptor 5
pS336/pS337-CCR5 (phospho-Chemokine Receptor 5...
Serine336/Serine337 (S336/S337) is a major phosphorylation site of the CCR5 receptor. The pS336/pS337-CCR5 antibody detects phosphorylation in response to high- and low-efficacy agonists and after PKC activation. S336/S337...
$ 400.00 *
NEW
Agonist-induced Serine387/Serine388 phosphorylation of the Proteinase-Activated Receptor 2
pS387/pS388-PAR2 (phospho-Proteinase-Activated...
Serine387/Serine388 (S383/S384) is major phosphorylation site of the Proteinase-Activated Receptor 2 (PAR2). The pS387/pS388-PAR2 antibody detects phosphorylation in response to agonists. S387/S388 phosphorylation is likely to be...
$ 400.00 *
NEW
Agonist-induced Serine364 phosphorylation of the β2-Adrenoceptor
pS364-β2 (phospho-β2-Adrenoceptor Antibody)
Serine364 (S364) is a major phosphorylation site of the β2 adrenoceptor. The pS364-β2 antibody detects phosphorylation in response to high- and low-efficacy agonists but not after PKC activation. S364 phosphorylation is primarily...
$ 400.00 *
NEW
Agonist-induced Threonine382/Threonine386 phosphorylation of the Dopamine Receptor 5
pT382/pT386-D5 (phospho-Dopamine Receptor 5...
Threonine382/Threonine386 (T382/T386) is a major phosphorylation site of the D5 receptor. The pT382/pT386-D5 antibody detects phosphorylation in response to high- and low-efficacy agonists but not after PKC activation. T382/T386...
$ 400.00 *
Citations
NEW
Validation of the Complement C5a Receptor 2 in transfected HEK293 cells.
C5a2 (non-phospho), Complement C5a Receptor 2...
The non-phospho-C5a2 receptor antibody is directed against the distal part of the carboxyl-terminal tail of human C5a2. It can be used to detect total C5a2 receptors in Western blots independent of phosphorylation. The non-phospho-C5a2...
$ 400.00 *
NEW
Validation of the Atypical Chemokine Receptor 2 in transfected HEK293 cells.
ACKR2 (non-phospho), Atypical Chemokine...
The non-phospho-ACKR2 receptor antibody is directed against the distal part of the carboxyl-terminal tail of human ACKR2. It can be used to detect total ACKR2 receptors in Western blots independent of phosphorylation. The...
$ 400.00 *
NEW
Agonist-induced Threonine355 phosphorylation of the Chemokine Receptor 10
pT355-CCR10 (phospho-Chemokine Receptor 10...
Threonine355 (T355) is a major phosphorylation site of the CCR10 receptor. The pT355-CCR10 antibody detects phosphorylation in response to high- and low-efficacy agonists and after PKC activation. T355 phosphorylation is a key regulator...
$ 400.00 *
SAMPLE PACK
Agonist-induced Threonine271 phosphorylation of the M2 Muscarinic Acetycholine Receptor
M2 Sample Pack (phospho- and non-phospho-M2...
M2 Sample Pack consisting of all six available phospho- and one non-phospho-M2 Receptor Antibodies 7 x 20 µL trial size each. Specifically, this sample pack contains the following antibodies pT271-M2 (7TM0014A), pS282/pS283-M2...
$ 300.00 *
SAMPLE PACK
Agonist-induced Threonine324/Serine327 phosphorylation of the Complement C5a Receptor 1
C5a1 Sample Pack (phospho- and non-phospho-C5a1...
C51 Sample Pack consisting of all five available phospho- and two non-phospho-C5a1 Receptor Antibodies 7 x 20 µL trial size each. Specifically, this sample pack contains the following antibodies pT324/pS327-C5a1 (7TM0032A),...
$ 400.00 *
SAMPLE PACK
Agonist-induced Threonine370 phosphorylation of the µ-opioid receptor
MOP Sample Pack (phospho- and...
MOP Sample Pack consisting of all four available phospho- and one non-phospho-µ-Opioid Receptor Antibodies 5 x 20 µL trial size each. Specifically, this sample pack contains the following antibodies pT370-MOP (7TM0319B), pS375-MOP...
$ 300.00 *
SAMPLE PACK
Agonist-induced Serine355/Serine356 phosphorylation of the β2-Adrenoceptor
β2-Adrenoceptor Sample Pack (phospho- and...
β2-Adrenoceptor Antibody Sample Pack consisting of three phospho- and one non-phospho-β2-Adrenoceptor Antibodies 4 x 20 µL trial size each. Specifically, this sample pack contains the following antibodies pS355/pS356-β2 (7TM0029A),...
$ 300.00 *
NEW
Agonist-induced Serine385/Serine387 phosphorylation of the Neuropeptide Receptor 1
pS385/pS387-NPFF1 (phospho-Neuropeptide FF...
Serine385/Serine387 (S385/S387) is major phosphorylation site of the Neuropeptide FF Receptor 1 (NPFF1). The pS385/pS387-NPFF1 antibody detects phosphorylation in response to agonists. S385/S387 phosphorylation is likely to be involved...
$ 400.00 *
Citations
NEW
Agonist-induced Serine355/Serine356 phosphorylation of the β2 Adrenoceptor
pS355/pS356-β2 (phospho-β2-Adrenoceptor Antibody)
Serine355/Serine356 (S355/S356) is a major phosphorylation site of the β2 adrenoceptor. The pS355/pS356-β2 antibody detects phosphorylation in response to high- and low-efficacy agonists but not after PKC activation. S355/S356...
$ 400.00 *
NEW
Agonist-induced Serine257/Threonine262 phosphorylation of the D3 Dopamine Receptor
pS257/pT262-D3 (phospho-Dopamine Receptor 3...
Serine257/Threonine262 (S257/T262) is a major phosphorylation site of the D3 dopamine receptor. The pS257/pT262-D3 antibody detects phosphorylation in response to high- and low-efficacy agonists but not after PKC activation. S262/T262...
$ 400.00 *
NEW
Agonist-induced Serine342 phosphorylation of the Chemokine Receptor 5
pS342-CCR5 (phospho-Chemokine Receptor 5 Antibody)
Serine342 (S342) is a major phosphorylation site of the CCR5 receptor. The pS342-CCR5 antibody detects phosphorylation in response to high- and low-efficacy agonists and after PKC activation. S342 phosphorylation is a key regulator of...
$ 400.00 *
NEW
Agonist-induced Threonine340 phosphorylation of the Chemokine Receptor 5
pT340-CCR5 (phospho-Chemokine Receptor 5 Antibody)
Threonine340 (T340) is a major phosphorylation site of the CCR5 receptor. The pT340-CCR5 antibody detects phosphorylation in response to high- and low-efficacy agonists and after PKC activation. T340 phosphorylation is a key regulator of...
$ 400.00 *
14 From 30

For further reading refer to:

Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017 Jul;38(7):621-636. doi:10.1016/j.tips.2017.04.002. Epub 2017 May 4. Review. PubMed PMID: 28478994.

Miess E, Gondin AB, Yousuf A, Steinborn R, Mösslein N, Yang Y, Göldner M, Ruland JG, Bünemann M, Krasel C, Christie MJ, Halls ML, Schulz S, Canals M. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018 Jul 17;11(539). pii: eaas9609. doi: 10.1126/scisignal.aas9609. PubMed PMID: 30018083.

Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT, Levitt ES, Williams JT, Christie MJ, Schulz S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat Commun. 2019 Jan 21;10(1):367. doi: 10.1038/s41467-018-08162-1. PubMed PMID: 30664663; PubMed Central PMCID: PMC6341117.

Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal. 2019 Mar 26;12(574). pii: eaau8072. doi: 10.1126/scisignal.aau8072. PubMed PMID: 30914485; PubMed Central PMCID: PMC6934085.

Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S, Stumm R. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin. Cell Rep. 2019 Feb 5;26(6):1473-1488.e9. doi: 10.1016/j.celrep.2019.01.049. PubMed PMID: 30726732.

Glück L, Loktev A, Moulédous L, Mollereau C, Law PY, Schulz S. Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry. 2014 Nov 15;76(10):767-74. doi: 10.1016/j.biopsych.2014.01.021. Epub 2014 Feb 3. PubMed PMID: 24629717; PubMed Central PMCID: PMC4119866.

For further reading refer to: Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017 Jul;38(7):621-636.... read more »
Close window
Premium Phosphosite-Specific 7TM Antibodies

For further reading refer to:

Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017 Jul;38(7):621-636. doi:10.1016/j.tips.2017.04.002. Epub 2017 May 4. Review. PubMed PMID: 28478994.

Miess E, Gondin AB, Yousuf A, Steinborn R, Mösslein N, Yang Y, Göldner M, Ruland JG, Bünemann M, Krasel C, Christie MJ, Halls ML, Schulz S, Canals M. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018 Jul 17;11(539). pii: eaas9609. doi: 10.1126/scisignal.aas9609. PubMed PMID: 30018083.

Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT, Levitt ES, Williams JT, Christie MJ, Schulz S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat Commun. 2019 Jan 21;10(1):367. doi: 10.1038/s41467-018-08162-1. PubMed PMID: 30664663; PubMed Central PMCID: PMC6341117.

Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal. 2019 Mar 26;12(574). pii: eaau8072. doi: 10.1126/scisignal.aau8072. PubMed PMID: 30914485; PubMed Central PMCID: PMC6934085.

Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S, Stumm R. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin. Cell Rep. 2019 Feb 5;26(6):1473-1488.e9. doi: 10.1016/j.celrep.2019.01.049. PubMed PMID: 30726732.

Glück L, Loktev A, Moulédous L, Mollereau C, Law PY, Schulz S. Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5. Biol Psychiatry. 2014 Nov 15;76(10):767-74. doi: 10.1016/j.biopsych.2014.01.021. Epub 2014 Feb 3. PubMed PMID: 24629717; PubMed Central PMCID: PMC4119866.

Recently viewed